
Cori Application Readiness Strategy - NESAP

Jack Deslippe
Acting Lead NERSC Apps
Performance Group
April, 2016

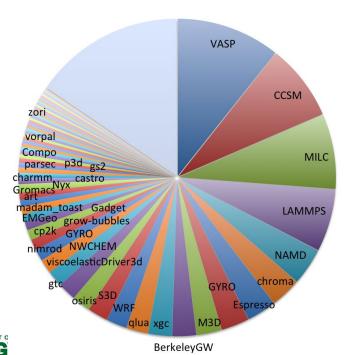
What is different about Cori?

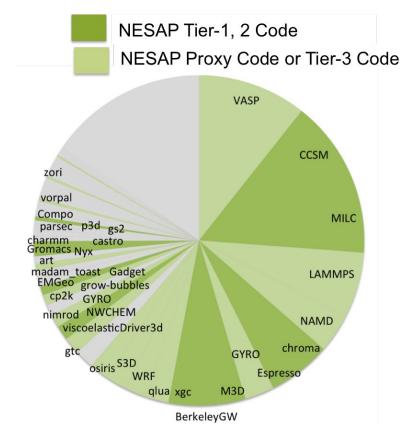
Edison (Ivy-Bridge):

- 12 Cores Per CPU
- 24 Virtual Cores Per CPU
- 2.4-3.2 GHz
- Can do 4 Double Precision
 Operations per Cycle (+ multiply/add)
- 2.5 GB of Memory Per Core
- ~100 GB/s Memory Bandwidth

Cori (Knights-Landing):

- Up to 72 Physical Cores Per CPU
- Up to 288 Virtual Cores Per CPU
- Lower GHz
- Can do 8 Double Precision
 Operations per Cycle (+ multiply/add)
- < 0.3 GB of HBM Memory Per Core< 2 GB of DDR Memory Per Core
- Fast memory has ~ 5x DDR4 bandwidth





Code Coverage

<u>Breakdown of Application Hours</u> <u>on Hopper and Edison</u>

Resources for Code Teams

Early access to hardware

- Access to Babbage (KNC cluster) and early "white box" test systems expected in 2015
- Early access and significant time on the full Cori system

Technical deep dives

- Access to Cray and Intel staff on-site staff for application optimization and performance analysis
- Multi-day deep dive ('dungeon' session) with Intel staff at Oregon Campus to examine specific optimization issues

User Training Sessions

- From NERSC, Cray and Intel staff on OpenMP, vectorization, application profiling
- Knights Landing architectural briefings from Intel
- NERSC Staff as Code Team Liaisons (Hands on assistance)
- 8 Postdocs

NESAP Postdocs

Taylor Barnes Quantum ESPRESSO

Brian Friesen **Boxlib**

Andrey Ovsyannikov **Chombo-Crunch**

Mathieu Lobet **WARP**

Tuomas Koskela XGC1

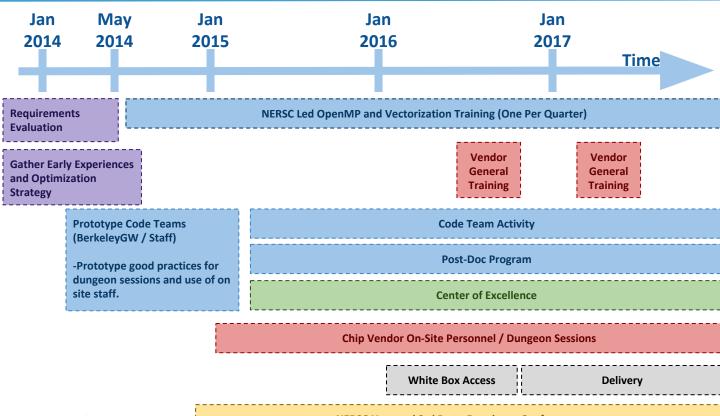
Tareq Malas **EMGeo**

Target Application Team Concept

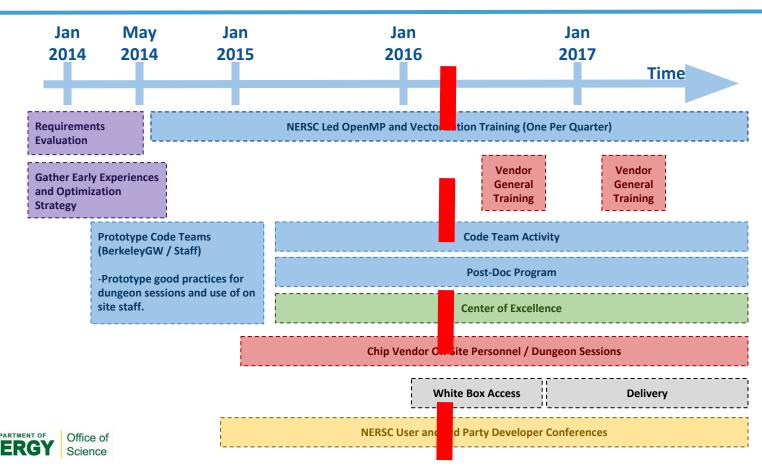
(1 FTE Postdoc +) 0.2 FTE AR Staff

0.25 FTE COE

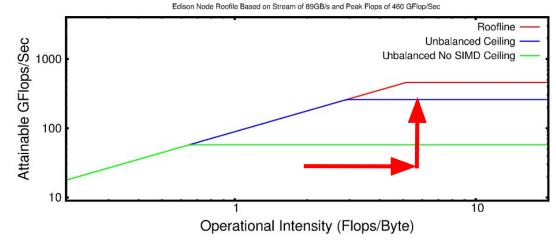
1.0 FTE User Dev.


1 Dungeon Ses. + 2 Week on site w/ **Chip vendor staff**

Timeline



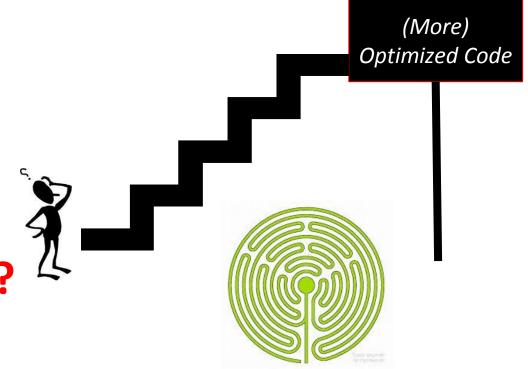
Timeline


Important Optimization Concepts

MPI+X (Where X is MPI, OpenMP, PThreads, PGAS etc)

Understanding Memory Bandwidth

Vectorization


Optimizing Code For Cori is like:

A. A Staircase?

B. A Labyrinth?

C. A Space Elevator?

OpenMP scales only to 4 **Threads**

large cache miss rate

Code shows no improvements when turning on vectorization

The Ant Farm!

50% Walltime

Memory bandwidth

bound kernel

Communication dominates beyond 100 nodes

Compute intensive doesn't vectorize

MPI/OpenMP Scaling Issue

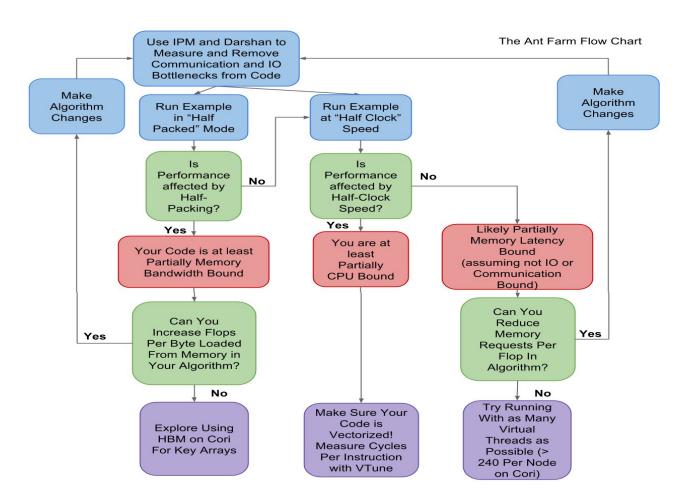
Use Edison to Test/Add OpenMP Improve Scalability. Help from NERSC/Cray COE Available.

Utilize performant / portable libraries

Can you use a library?

Create micro-kernels or examples to examine thread level performance, vectorization, cache use, locality.

Increase Memory

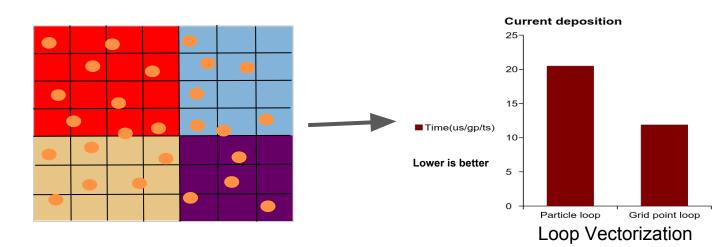

Locality

IO bottlenecks

Utilize High-Level **IO-Libraries.** Consult with NFRSC about use of Burst Buffer.

The Dungeon: Simulate kernels on KNL. Plan use of on package memory, vector instructions.

Dungeon Prep Flow Chart



What Has Gone Well

- 1. Setting requirements for Dungeon Session motivates teams to get started early and improves quality of dungeon session.
- 2. Engagement with IXPUG and user communities (Exascale Workshops at CRT)
- 3. Large number of NERSC and Vendor Training (Vectorization, OpenMP, Tools/Compilers)
- 4. Learned a Lot about Tools and Architecture (VTune, SDE, HBM, Crapat, Reveal etc.)
- 5. Vendors Keen to Help

Warp Vectorization Improvements at The Dungeon - Directly enabled by tiling work with Cray COE in Pre-dungeon

Tiling improves memory locality

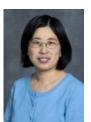
What Our Users Want

- Performance They want to do as much science possible on the largest/most-impactful systems they can
- Portability They run on multiple systems in the DOE and elsewhere. Where possible want fewer branches.
- Continuity They want to know investments they make now won't have to be remade every two years.

Extras

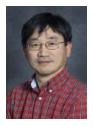
NERSC Staff associated with NESAP

Nick Wright


Richard Gerber

Brian Austin

Zhengji Zhao


Helen He

Ankit Bhagatwala

Stephen Leak

Woo-Sun Yang

Rebecca Hartman-Baker

Doug Doerfler

Jack Deslippe

Brandon Cook

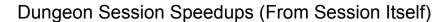
Thorsten Kurth

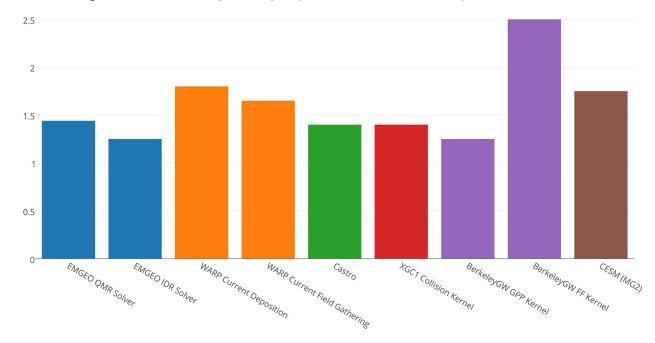
Target Application Team
Concept
(1 FTE Postdoc +)
0.2 FTE AR Staff

0.25 FTE COE

1.0 FTE
User Dev.

1 Dungeon Ses. + 2 Week on site w/ Chip vendor staff





Working With Vendors

NERSC and other centers are uniquely positioned between HPC Vendors and HPC Users and Applications developers.

NESAP provides a power venue for these two groups to interact.

